Especially the machine-building industry often asks me which is the proper measuring element for them. This is the reason why I wish to explain in the following paragraphs the differences between your most commonly used sensors Pt100, Pt1000 and NTC. I will go into more detail concerning the lesser-used measuring elements Ni1000 and KTY sensors in the comparison at the end of this article.
Application regions of Pt100, Pt1000 and NTC
Resistance thermometers based on Pt100, Pt1000 (positive temperature coefficient PTC) and NTC (negative temperature coefficient) are used everywhere in the industrial temperature measurement where low to medium temperatures are measured. Along the way industry, Pt100 and Pt1000 sensors are employed almost exclusively. In machine building, however, often an NTC can be used ? not least for cost reasons. Since meanwhile the Pt100 and Pt1000 sensors are manufactured in thin-film technology, the platinum content could be reduced to a minimum. As a result, the price difference compared to the NTC could be reduced to this extent that a changeover from NTC to Pt100 or Pt1000 becomes interesting for medium quantities. Particularly since platinum measuring resistors offer significant advantages over negative temperature coefficients.
Benefits and drawbacks of the various sensors
The platinum elements Pt100 and Pt1000 provide benefit of meeting international standards (IEC 751 / DIN EN 60 751). Due to material- and production-specific criteria, a standardisation of semiconductor elements such as NTC isn’t possible. Because of this their interchange ability is bound. Further advantages of platinum elements are: better long-term stability and better behaviour over temperature cycles, a wider temperature range as well as a high measurement accuracy and linearity. High measurement accuracy and linearity are also possible having an NTC, but only in an exceedingly limited temperature range. While Pt100 and Pt1000 sensors in thin-film technology are suitable for temperatures around 500�C, the typical NTC may be used for temperatures around approx. 150�C.
Influence of the supply line on the measured value
The lead resistance affects the measurement value of 2-wire temperature sensors and must be taken into account. For Crooked with a cross-section of 0.22 mm2, the following guide value applies: 0.162 ?/m ? 0.42 �C/m for Pt100. Alternatively, a version with Pt1000 sensor could be chosen, with which the influence of the supply line (at 0.04 �C/m) is smaller by way of a factor of 10. The influence of the lead resistance when compared to base resistance R25 for an NTC measuring element is far less noticeable. As a result of sloping characteristic curve of the NTC, the influence at higher temperatures increases disproportionately in the event of higher temperatures.
Conclusion
In case of high quantities, using NTC sensors is still justified because of cost reasons. For small to medim-sized lots, I recommend the usage of a platinum measuring resistor. The use of a Pt1000 stated in thin-film technology is a perfect compromise between the costs on the main one hand and the measurement accuracy on another. In the following table, I have compiled the strengths and weaknesses of the different measuring elements within an overview for you personally:
Strengths and weaknesses of different sensors
NTC
Pt100
PT1000
Ni1000
KTY
Temperature range
?
++
++
+
?
Accuracy
?
++
++
+
?
Linearity
?
++
++
+
++
Long-term stability
+
++
++
++
+
International standards
?
++
++
+
?
Temperature sensitivity (dR/dT)
++
?
+
+
+
Influence of the supply line
++
?
+
+
+
Characteristic curves of Pt100, Pt1000, NTC, KTY and Ni1000
The characteristic curves of the different measuring elements can be seen in the following overview:
Characteristic curves of the different sensors
Note
Our temperature sensors for the machine-building industry can be found with all common measuring elements. Further information can be found on the WIKA website.
Find out more about the functionality of resistance thermometers with Pt100 and Pt1000 sensors in the following video: